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- dur study considere effective-plane/-wave propagation, both
longitudinal and shear, through a medium jcontaining a random distribution of
spherical inclusions. We assumed that the particles and matrix are
separated by a thin laye;§;£ elastic material with different properties.

For some systems, we pre measurable ects for the thin layers.
Especially, we considered\lb/opoxy and 1,[5D

1. Introduction _ :

Wave propagation through a partiéle-reinfﬁ;éed composite medium has
been studied by many authors [1-13]. Except [5], all these studies assume
that the inclusions bond perfectly with the surrounding matrix material. 1In
[5), for long wavelengths, the authors consider the effect of a thin viscous
third layer. Recently, Sayers (11] examined the effect of this layer when
the particles and the matrix possess the same properties.

In the present study, we analyze the problem of wave propagation in a
composite medium with a random distribution of spherical inclusions. The
inclusions are separated from the matrix by thin layers of elastic material.
The properties of the layers vary through the thickness such that there is a
continuous transition from the inclusions to the matrix.

The object of this study was to explore the practicality of using
ultrasound to characterize properties of interface layers. Ultrasound is a

practical tool for measuring properties of, and characterizing the state of,
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a material with microstructure (or changes in microstructure). References
to such studies occur in fi;}

,
-

AN

2. Scattering by a spherical inclusion with an interface layer

Consider a spherical inclusion of radius a and elastic propetties'ki,
B, p, embedded in an elastic matrix of material properties A,, p,, pa.
Also, let the inclusion be separated from the matrix by a thin layer of
uniform thickness h(<<a) with variable material properties A(r), p(r), and
p(r). Here, A, u denote Lamé constants and p density. Let A(r), u(r) be

expressed as
A(r) + 2u(xr) = (A, + 2u,)f(r), a<r <a+h, (1)

p(xr) = pug(r), a<r<a+h. (2)

-

Here, f(r) and g(r) denote general functions of r. A special case arises

when

f(a) - 1, g(a) - 10

o A2 + 2u, - B2
£a+h) = 2122 gasm) - b2, (3

with the stipulation that f£(r) and g(r) with their first derivatives are
continuous in (a, a + h). Since h is assumed to be much smaller than a, it

follows from (3) that £'(a) and g'(a) can be approximated by

£'(a) = (Mg + 2p5) = (A + 24,) , é

h(Al + 2;&‘)

a
9]
g'(a) = EzEE:EL . = “Ezij . AA

Another special case arises when the interface material possesses T

constant properties. Then we have LT
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o £(r) = (A1 + 2u1)/(Ay + 24,), g(¥) = pi/b,s. &)
g '

b.

;N Here A}, pj{ are the Lamé constants for the interface material.

e We also make the assumption that h is much smaller than the wavelength
-, of the propagating wave. Then, to first order in h/A, ) being the

i

;5 wavelength,

KON

" rt-fs+r rt-rs+ri

ry rr rr’ ré ré e '’

* t s i

f\: "o "ret Tro - (6
&

K% Here T1j is the stress tensor and superscripts t, s, and i denote the

¢

$? transmitted, scattered, and incident field quantities, respectively. Note
:$ that rij, rij, and rfj appearing above are calculated at r = a. The

i spherical polar coordinates r, ©, & are defined in Fig. 1. Boundary

() conditions (6) express the fact that, to first order in h/), the traction
:{ components do not suffer any jump across the layer. However, the

¢y

s' displacement components suffer jumps given by

Y

.) oS 4+ ui -t - hK, .t (7)
:\ r o r A, + 25, rx’'

o

K

v

[} s i _ - L\Ez t

. ug + ug — u ™ e’ (8)
i

5.

X s i t hK, t

x - -—=

a0 ug *tug ug = 2T, (9
o1

B

e Here,
1
o
R~ [} _ax [} __ax
% Ki=Jdof@+mny K27 do g@amm (10)
“

fr Using equations (3) and (4) in (10), we find that K; and K, are given
i% approximately by
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K, = ~A1 __ In [1 + Ez_:_E;] (12)
B2 = By By :

On the other hand, if eq. (5) is used, then
Ky = (A + 287)/(A + 28)), K = py/Bi. (13)

Mal and Bose [5] studied a problem similar to the one considered here. They
assumed a thin viscous third layer between the sphere and the matrix and
imposed the condition of radial-displacement continuity.

We assumed the incident wave to be either a plane longitudinal wave
propagating in the positive z-direction or a plane sbgar wave polarized in

the x-direction and propagating in the positive z-direction. Thus,

-+

i ik,z
-e e
~z

ik,z
e (e (14)
Here, k; = w/c, and k; = w/c,. w denotes the circular frequency of the wave
and ¢,, c, denote the longitudinal and shear wave speeds in the matrix. The
factor e~1wt yas suppressed.

51 given above can be expanded in spherical vector wave functions as

S U n (1)
2= ik, ngo 1" (@2n+ 1) L on

1 . 2n + 1 n (1)
+ 21 ngl =1 n(n + 1) i D$M\(6m1 +n(n+ 1) Sm,-l)
1 N -
+ k, t-‘1||m (sml a(n + 1) 5n.~1)]' (13)
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Vector wave functions and appearing above are regular at r -

0 and are given by

E;i) - [sr %? I, (kyr) P: (cos®) + e, § (kr) £ %— : (cos8)

ind

A _ (kyr) P: (cose)] e .

~0 Isin® j

imd

a
-mn [_9 ,1n9 J (kyr) P: (cos8) - % Jn (k,r) 70 P: (cose)] e ,

5(:; - [Er Eiﬂgi_ll 3, (kgr) P: (cos®) + e

Hln—o

g— (rj_ kzr))x

a m im - imd

36 Pn (cos8) + e) —— ar (ry (ky1)) p (cose)] e ) (16)
The scattered and transmitted fields can be written
We 8 L o 1P o sn mPD e w3y, (17)
- n=0 m=—1 mn ~mn = mo mn ~-mn mn ~mn
e B F a1ty ap wDe g gy (18)
~ n=0 m=—1 mn ~mn mo mn ~mn mn ~mn

Here, the prime denotes that k, and k; are to be replaced by ki (= w/ci) and
k; (= w/cj), respectively. c¢{ and c; are the wave speeds in the inclusion. .
9(3) H(3) (3)

. M , and N are obtained by replacing Jn by hn in (16). Note that

Jn i{s the spherical Bessel function of the first kind, and hn is the

spherical Hankel function of the first kind.
The constants A, B, C, A’, B’', C' are found by using conditions (7) and
(8)-(10). For this purpose, we define the following matrices:

b ()
,iq“u o




N Here,

Fn(k;a) = nhp(k;a) — k;ahp,g(k,a),

Cn(kza) = n(n + 1) hy(ksa), Hy(kya) = ho(ka),

I In(kza) = (n + 1) hy(k,a) = kyahnyy(ksa),

':- SFo(k,a) = (n? — n — % k§a?) hp(k,a) + 2k,abnyy(k,a),
o SGy(kza) = n(n+1) [(n = 1) hp(k,a) — kyahpey (kp2)],

' SH,(k,a) = (n — 1) hq(k,8) = kyahgeq(ka),

o SIy(ksa) = (n? — 1 — WkFa?) hy(kza) + kaahpey(kqa).

Y Equations to determine Apy and By, are found to be

R 2h p o-m s B2popTrL Yanl _
'? a n n 4; nn n c

mn

i i
u 1 4
___.' a r(mn) - _ﬁ 2\. x + 82 M’ L'} rr(mn) .
K.~ 11 2u, | & B, nn 1 1

¢ Here

we A AT A "P'.F..-".)'"—'Q,‘-.F-'-""ﬁ-
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My, Lp are obtained from Mp, L,, respectively, by replacing h, and hpyq by
Wi Jn and jn4+t, respectively, in (19) and (20), and by replacing k; and k, by

I k{ and k;, respectively. 1In writing (21) we express u% and ué given by (15)
i as

W i i m imd
‘E u_ - ngo mé-l ur(mn) Pn (cosB)e .

et m
0 S 1i aPn 21 im _ml imd
o Ye ngo mé—l {ue(mn) 38 " Ye(mn) sind Pn e ) (22)

' It then follows that

: i i
Eost fr:z'(um) 2pg; T = ur(mn)
Ko { 14 "% LMy 11 ' - (23)

b i fre(nm) ue(mn)

~ L, and ﬁn are obtained from L, and M, respectively, by replacing h, and hpyy
by jn and jpn4,, respectively.
The equation to find By, is

[g K2z ((n = 1) h_(k;a) = kyah_, (k;a)) -

- -
7,/ d @3 e
" e

-

(24)

{I

(n - 1) h_(k,a) - k,ah (kpa)
h (k;a) + E2 3 (kja) —— n_~ ol ]
n By °n (n-1) jn(k,a) k,a3n+1(k2a) mn

@ r
¥ L.ﬁ".-'.-'."aw

%

- 2t -a (h B2 jn(kia) 21
Ye(mn) T u, [a ®22 t RS 1) 3 (kja) - k;ajn+1(k53)] " r6(mn)

L v
t“{ﬁo‘%

-
Yy

Y
"l‘.“‘%

Here,

24 _pp (n = 1) Jn(kya) = kaalngy(kea) 21

‘ - "ré(mn) " a Jn(kaa) 6(mn) " (23)
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Once Apn, Cpns and By, are determined by solving (21) and (24), the
scattered field is then found from (17). Since the expressions for the
field inside the inclusion will not be needed to derive the dispersion
equation governing the effective wavenumber of plane-wave propagation

through the composite medium, we omit these.

3. Distribution of inclusions

In [5, 14] the scattered-field expressions were used to calculate
effective wave speeds at long wavelengths in a medium with a distribution of
spherical inclusions with interface layers. A ’'quasicrystalline’
approximation together with the assumption of no correlation was used to
derive expressions for the effective wave speeds. As has been shown [12],
particular forms of two-particle correlations can be included in the
formalism. But this leads to complicated equations that require numerical
solutions. .

In this study, we adept the approach taken in [10, 11] to calculate
approximate phase velocities and attenuation of plane-longitudinal and
plane-shear waves. In this simple approximation, the effective wavenumber k

is related to the forward scattered amplitude by the equation [15):

2 w k3 + 4rnf(K) . (26)

Here, k, is the wavenumber in the absence of scatterers, n the number

density of scatterers, and f the averaged forward-scattered amplitude.
Equation (26) is an implicit equation for the determination of the (complex)
wavenumber K. A further simplification occurs when the solution to (26) is

taken as

K2 = k3 + 4nngf(k). (27

Equation (27) was derived by Foldy [16] and has been used by many authors to
calculate the frequency dependence of phase velocity and attenuation of
plane waves. Equations (26) and (27) are valid for low volume

concentrations of inclusions.
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Using (17) in (26), we find that for longitudinal waves the effective

o wave number is
P
44
R K op 4400 8 5y A (K, .Ky) (28)
J k, k3 n=0 on 1’720
W
&ﬁx
;ﬁ; For shear waves we obtain
0N
i
Ko12 4mn n
-2 - —_—0 -
o [kz] 1+ 53 o2 DT () (€ +
L3 %)
)
R
e Kl - L, kLB, (29)
A 2 “1n n(n+l) ‘"=1n =~ 2 “~in’’ ¢
." )
ii In the following section we present phase velocity and attenuation
“;: calculated from the above two equations. Note that the real part of K/k

gives the velocity ratio ¢/C, where c is the velocity in the matrix and C is

the effective velocity in the composite. The attenuation of power is

-
.

by obtained from the equation
aa
i
K 2_.2mf . (30)
J k k
e
2
y N For dilute concentration this equation reduces to
o
!
% - n, I. (31)
o
1V
fﬁ; Here, Z denotes scattering cross section.
*.l
@2 4
e . Numerical results and discussion
:sr Computations were made for two particular composite materials: lead-
N
.}.o epoxy and SiC-Al. For both materials, we consider two interface
B
o+, thicknesses: zero and 0.1a, through which the properties vary linearly from
AN the inclusion to the matrix.
Iy, <
':H Numerical results for the lead-epoxy composite based on a simplified
\l
bqj eq. (27) were presented in {10]. Figures 2 and 3 show the attenuation and
,&-
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phase velocity of a longitudinal wave when the interface thickness equals
zero. These results agree with those given in [10]). Also shown in these
figures are the results for h/a = 0.1. 1t is seen that this thickness has
little effect. At intermediate frequencies, the interface lowers the phase
velocity and slightly increases the attenuation. Figures 4 and 5 show the
results for the shear wave; the effect is slightly larger at moderate
frequencies. We also computed the phase velocity and attenuation using eq.
(26). Figure 6 shows that eq. (27) overestimates the attenuation. For
phase velocity, however, as shown in Fig. 7, eq. (26) overestimates it at
low frequencies, underestimates it at moderate frequencies, and gives nearly
the same results at high frequencies.

Finally, in Figures 8-11 we show results for the second example:
SiC-Al. These results are based on eq. (27) and show that the interface

decreases both the attenuation and the phase velocity.

5. Conclusions

We considered the effect of thin interface layers between the
inclusions and the matrix in modifying the dynamic properties of composite
materials. Dymamic effective properties were calculated by usiﬁédfgi;;:;
equations. We found that interface effects are larger in some composites.
We also studied the predictions based on iterative solutions of modified
Foldy's equations in which the scattering amplitudes were calculated
assuming that the matrix had the properties of the composite. This
iterative solution underestimates attenuation in general; at low frequencies

it overestimates phase velocity.
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Table 1.

X Properties of constituents

& Density (g/cm®) E(GPa) u(GPa)

W Lead 11.3 23.57 8.35
P Epoxy 1.18 4.31 1.57
) sic 3.181 440.6 188.1

¥ Al 2.706 71.6 26.7
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Fig. 4.
Fig. 5
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Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
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igure

Geometry of a spherical inclusion with an interface layer.

Attenuation of longitudinal waves in a lead-epoxy composite with
and without interface layer.

Phase velocity of longitudinal waves in a lead-epoxy composite
with and without interface layer.

Attenuation of shear waves in a lead-epoxy composite with and
without interface layer.

Phase velocity of shear waves in a lead-epoxy composite with and
without interface layer.

Comparison of attenuation coefficients for longitudinal waves in a
lead-epoxy composite predicted by an iterative solution of eq.
(26) and by eq. (27).

Comparison of phase velocities of longitudinal waves in a lead-
epoxXy composite predicted by an iterative solution of eq. (26) and
by eq. (27).

Attenuation of longitudinal waves in an SiC-Al composite with and
without interface layer.

Phase velocity of longitudinal waves in an SiC-Al composite with
and without interface layer.

Attenuation of shear waves in an SiC/Al composite with and without
interface layer.

Phase velocity of shear waves in an SiC/Al composite with and
without interface layer.
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